УЛК 544.4:544.45

ВЛИЯНИЕ ДОБАВОК ВОДОРОДА, МОНООКСИДА УГЛЕРОДА, СИНТЕЗ-ГАЗА И ВОДЯНОГО ПАРА НА ХАРАКТЕРИСТИКИ МАТРИЧНОЙ КОНВЕРСИИ БОГАТЫХ МЕТАН-КИСЛОРОДНЫХ СМЕСЕЙ

© 2020 г. В. И. Савченко^{1, *}, А. В. Никитин^{1, 2}, А. В. Озерский^{1, 2}, Я. С. Зимин^{1, 2}, И. В. Седов^{1, 3}, В. С. Арутюнов^{1, 2, 3}

¹Институт проблем химической физики РАН, г. Черноголовка, Московской обл., 142432 Россия ²Федеральный исследовательский центр химической физики им. Н.Н. Семенова РАН, Москва, 119991 Россия ³Московский государственный университет имени М.В. Ломоносова, Химический факультет, Москва, 119991 Россия

> *E-mail: vsavch@icp.ac.ru Поступила в редакцию 21.02.2020 г. После доработки 05.03.2020 г. Принята к публикации 11.03.2020 г.

Проведено экспериментальное исследование и детальное кинетическое моделирование характеристик процесса матричной конверсии метан-кислородной смеси при введении в нее добавок водорода, монооксида углерода, синтез-газа и водяного пара. Показано, что наиболее существенное влияние на состав продуктов оказывает добавка водяного пара, снижающая выход ацетилена и одновременно увеличивающая соотношение H_2/CO . Получено хорошее согласие экспериментальных результатов и кинетического моделирования.

Ключевые слова: парциальное окисление, природный газ, синтез-газ, моделирование

DOI: 10.31857/S0028242120040139

При конверсии (горении) богатых метан-кислородных смесей в конверторах матричного типа при температурах 1400—1600 К и мольных соотношениях метана и кислорода (1:0.6)-(0.8)[1-3] получают газовую смесь, содержащую Н2 и СО в соотношении 1.7-1.75 с примесью CO_2 (до 5 об. %), непрореагировавшего метана (до 8 об. %) и ацетилена (2-3 об. %), образующегося при пиролизе части метана [4]. Процесс сопровождается заметным сажеобразованием. Ацетилен является предшественником образования сажи и других продуктов конденсации, поэтому снижение его содержания в получаемом газе является важной технологической задачей. Одним из эффективных способов снижения образования ацетилена в процессе горения богатых метан-кислородных смесей является добавка водяного пара [5, 6]. Было интересно исследовать влияние на характеристики процесса, особенно на содержание ацетилена в получаемом синтез-газе, и других добавок, в частности, основных продуктов процесса: водорода, СО и самого синтез-газа.

Известно [7–12], что добавки водорода промотируют горение углеводородов (УВ) в двигателях внутреннего сгорания. Присадки водорода к топливо-воздушным смесям позволяют существенно

расширить пределы воспламенения, что обеспечивает снижение расхода основного топлива, особенно на малых нагрузках и режиме холостого хода, снижение выбросов несгоревших УВ и оксидов азота. Аналогично действие и синтез-газа.

Влияние синтез-газа, Н₂ и СО на горение богатых метан-кислородных смесей исследовали в работах [13, 14], в которых показано, что в условиях установки статического типа при воспламенении с помощью пережигаемой проволоки или форкамерном зажигании при давлении 1.5 МПа и начальной температуре 300°C эти добавки снижают сажеобразование и повышают степень превращения метана до 99.5-99.7%. Проведенное автором [15] сравнение результатов гомогенного парциального окисления метан-кислородных смесей с $\alpha = [O_2]/2[CH_4] = 0.35$ в различных реакторах, представленное в табл. 1, показало, что в условиях проточных установок различного типа показатели процесса существенно отличны от характеристик исследовательского статического реактора и сопоставимы с представленными выше аналогичными характеристиками для процесса матричной конверсии.

Гомогенная конверсия богатых метан-кислородных смесей в присутствии паров воды позво-

	Концентрация, об. %								
Соединение	статический реактор	проточный реактор	реактор с критическим сечением на базе ЖРД*	реактор с критическим сечением и с турбулизатором на базе ЖРД	матричный конвертор				
$\overline{\mathrm{H_2}}$	62.7	38.3	49.9	53.4	54.3				
CO	33.8	25.6	26.0	28.3	31.3				
CO_2	2.7	7.4	6.4	7.1	5.3				
CH ₄	0.8	22.7	11.6	6.1	7.2				
O_2	_	2.4	2	1.0	_				
C_2H_6	_	0.2	0.2	0.1	_				
C_2H_4	_	1.6	2.0	1.3	0.6				
C_2H_2	_	1.9	1.8	2.8	1.3				
H ₂ /CO	1.9	1.5	1.9	1.9	1.7				
CO/CO ₂	12.5	3.5	4.1	4.0	5.9				

Таблица 1. Сравнение состава смесей, получаемых при гомогенном парциальном окислении метан-кислородных смесей с $\alpha = 0.35$ в реакторах различного типа по данным работ [2 и 15]

ляет существенно снизить сажеобразование при получении синтез-газа методом автотермического риформинга (ATR). Однако влияние паров воды на закономерности некаталитичекого гомогенного окисления таких смесей при высоких температурах в литературе освещено недостаточно.

Цель данной работы — теоретическое и экспериментальное исследование влияния добавок водорода, СО, синтез-газа и водяного пара на характеристики матричной конверсии богатых метан—кислородных смесей.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Термодинамический анализ распределения продуктов проводился с использованием программы "Терра". В кинетических расчетах использовали механизм Curran et al. [17], расчеты проводили в программной среде Chemical Workbench для модели plug flow reactor [18] при изотермических условиях.

Эксперименты проводили на лабораторном конверторе, включающем два симметрично расположенных друг напротив друга матричных блока. Подобный дизайн конверторов был описан ранее в работах [1—5, 19]. В качестве окислителя использовали технический кислород (ГОСТ 5583—78). Расход метан-кислородной смеси составлял 10.3 мл/с (коэффициент избытка окислителя $\alpha \sim 0.5$). Объем добавок водорода и моноокисида углерода в исходную смесь варьировали, соответственно, от 0 до 25% и от 0 до 15% относительно расхода метана. Анализ газообразных реагентов и продуктов проводили на газовом хроматографе "Кристалл 5000 М" с тремя параллельными аналитическими

каналами, позволяющими одновременно регистрировать все основные компоненты газа. Погрешность измерения составляла 6 отн. %.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Термодинамический анализ

Реальное распределение продуктов при матричной конверсии углеводородных газов определяется кинетическими закономерностями окисления, протекающего по сложному радикально-разветвленному механизму. Однако предварительный термодинамический анализ позволяет оценить предельные концентрации продуктов, которые могут образовываться при достижении равновесия в заданных условиях проведения процесса.

С использованием программы "Терра" [16] рассчитано распределение равновесной концентрации продуктов в системе:

$$CH_4 + 2\alpha O_2 \rightarrow Продукты$$

без добавок и с добавками H_2 , CO и синтез-газа $(H_2/\text{CO} = 1.7)$ в изотермических условиях.

В табл. 2 представлены данные расчета равновесного выхода компонентов реакции в системе ${\rm CH_4}+0.72~{\rm O_2}+$ добавки \to продукты при темпе-

ратуре 1600 K, величины $K_{\rm p}=\frac{[{\rm CO}_2][{\rm H}_2]}{[{\rm CO}][{\rm H}_2{\rm O}]},$ а также важнейшего технологического параметра — соотношения $k_{\rm p}=\frac{[{\rm H}_2]}{[{\rm CO}]}.$

Как видно из табл. 2, при добавлении к исходным реагентам синтез-газа с соотношением H_2/CO , близком к получаемому в продуктах при равнове-

^{*} ЖРД – жидкостной ракетный двигатель.

Равновесный выход компонентов	СH ₄ + 0.72 О ₂ + добавки							
реакции, моль на моль метана	a_p	b _p	c_p	d_p	K_{p}	$k_{ m p}$		
Без добавок	0.930	1.630	0.070	0.370	0.331	1.75		
$+0.25 \text{ CO} + 0.425 \text{ H}_2$	1.180	2.055	0.070	0.370	0.331	1.74		
+0.25 CO	1.166	1.644	0.084	0.356	0.331	1.41		
+0.425 H ₂	0.942	2.043	0.058	0.382	0.331	2.17		
$+1.0~{ m H}_{2}{ m O}$	0.798	1.702	0.202	1.298	0.331	2.13		

Таблица 2. Равновесный выход компонентов реакции в системе: $CH_4 + 0.72 O_2 +$ добавки \rightarrow Продукты при температуре 1600 K, моль на моль метана, K_p и соотношение $k_p = [H_2/CO]$ (a = CO; b = H_2 ; c = CO₂; d = H_2O)

сии, эта добавка не влияет на распределение продуктов. И это достаточно очевидно, так как при одних и тех же K_p и H_2/CO одинаковым должно быть и соотношение H_2O/CO_2 .

Ввод в виде добавки отдельных компонентов синтез-газа, увеличивая равновесный выход этого компонента примерно на величину вводимой добавки, мало сказывается на равновесном выходе остальных продуктов, а постоянство величины $K_{\rm p}$ поддерживается за счет изменения малой по значению величины выхода ${\rm CO}_2$.

Добавка водяного пара (1 моль H_2O на 1 моль CH_4), как видно из табл. 2, оказывает более существенное влияние на равновесное распределение продуктов, увеличивая выход H_2 и CO_2 и снижая выход CO, и тем самым существенно увеличивает соотношение H_2/CO .

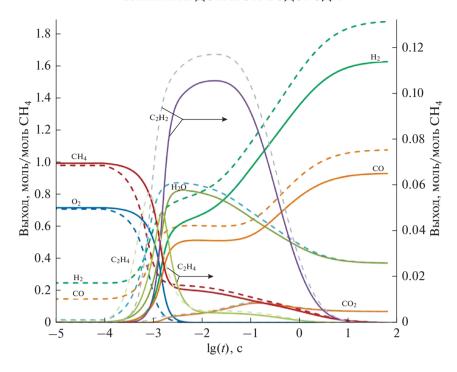
Моделирование парциального окисления метана в присутствии добавок с использованием детальной кинетической схемы

Хотя в реальных условиях процесс матричной конверсии метана не является изотермическим, для упрощения анализа кинетическое моделирование проведено для такого режима. Учет неизотермичности процесса как в зоне горения метана, так и в постпламенной зоне не сильно влияет на общую физико-химическую картину процесса, больше сказываясь на его временных характеристиках.

Детальное кинетическое моделирование позволяет проследить за изменением распределения продуктов в ходе реакции парциального окисления метана и за тем, как устанавливается равновесие в системе: $\mathrm{CH_4} + 2\alpha\mathrm{O_2} \to \mathrm{Продукты}$. Для приведенных выше условий матричной конверсии (соотношение кислород: метан = 0.72:1, $T=1600~\mathrm{K}$) кривые изменения выхода компонентов реакции при парциальном окислении метана для модели plug flow reactor в изотермическом режиме с добавкой 25% $\mathrm{H_2}$ и 14.7% CO и без добавки представлены на рис. 1.

Представленные на рис. 1 расчетные кривые изменения состава газовой смеси как в отсутствие добавки, так и с добавкой синтез-газа, указывают на три характерные стадии гомогенного парциального окисления метана. *Первая* стадия быстрых реакций с участием кислорода (зона горения) завершается за очень малые времена (менее 10^{-2} с при 1600 K) его практически полной конверсией, в результате которой образуются CO, H_2 , CO_2 и H_2O , но в далеком от равновесия соотношении, а также продукты пиролиза метана: этилен и ацетилен и в незначительных количествах этан. Условно временем завершения первой стадии процесса можно считать время достижения конверсии кислорода на уровне 99.5%.

На *второй* (постпламенной) стадии протекают более медленные реакции паровой конверсии образовавшихся продуктов. Концентрация водорода существенно возрастает, и как показано в [19],


величина $\frac{[CO_2][H_2]}{[CO][H_2O]}$ становится равной значе-

нию $K_{\rm p}$ при равновесии, хотя концентрации продуктов еще не достигают равновесных значений изза неполного превращения ацетилена и неполной конверсии метана. Для приведенных условий процесса эта стадия протекает в интервале 10^{-2} — 10^{-1} с.

Окончательно равновесие устанавливается на *третьей* стадии, существенно более продолжительной по времени по сравнению с первыми двумя.

На основании кинетического расчета были получены материальные балансы по компонентам для реакции $\mathrm{CH_4} + 2\alpha\mathrm{O_2} \to \Pi$ родукты для первой и второй зон реакции и установлено влияние вводимых добавок на распределение продуктов. Данные расчетов приведены в табл. 3 и 4. В табл. 3 представлен материальный баланс для первой зоны горения (1) и второй постпламенной зоны (2) при проведении процесса в отсутствие добавок и в присутствии добавки синтез-газа в количестве 25% $\mathrm{H_2}$ и 14.7% CO по отношению к метану в расчете на 100 молей исходной смеси.

На основании данных, приведенных в табл. 3, уравнение баланса для зоны 1 в расчете на проре-

Рис. 1. Изменение состава газовой смеси при парциальном окислении метана с добавкой (25% H₂ + 14.7% CO) по отношению к метану (пунктирные кривые) и без добавки (сплошные кривые). Соотношение O₂/CH₄ = 0.72: 1, T = 1600 K.

агировавшие метан и кислород имеет представленный ниже вид.

В отсутствие добавки:

$$79.4\,\mathrm{CH_4} + 71.8\,\mathrm{O_2} \rightarrow 63.5\,\mathrm{H_2} + 51.1\,\mathrm{CO} + \frac{\Delta y}{\Delta x} + 4.8\,\mathrm{CO_2} + 82.4\,\mathrm{H_2O} + 0.95\,\mathrm{C_2H_4} + 10.1\,\mathrm{C_2H_2};$$
 с добавлением 25% $\mathrm{H_2} + 14.7\%$ CO по отношению к метану

$$76.7 \text{ CH}_4 + 71.8 \text{ O}_2 + 25.0 \text{ H}_2 + 14.7 \text{ CO} \rightarrow$$

 $\rightarrow 52.0 \text{ H}_2 + 25.0 \text{ H}_2 + 45.4 \text{ CO} + 14.7 \text{ CO} +$
 $+ 5.2 \text{ CO}_2 + 87.1 \text{ H}_2 \text{O} + 1.1 \text{ C}_2 \text{H}_4 + 11.2 \text{ C}_2 \text{H}_2.$

Видно, что при введении добавки синтез-газа часть кислорода в зоне 1 расходуется на окисление дополнительно вводимого водорода, снижая его количество, идущее на окисление метана, что было показано нами в [4]. В результате этого снижается доля окисленного метана, снижается образование Н2 и СО, но увеличивается образование Н₂О. Негативным фактором введения добавки синтез-газа является увеличение (хоть и небольшое) содержания наиболее нежелательной примеси – ацетилена. Из компонентов синтезгаза более негативно влияет добавка водорода, приводящая к отмеченному выше дополнительному расходу кислорода на его окисление и увеличению доли H₂O. Добавка СО несколько увеличивает содержание СО2, мало влияя на содержание C_2H_2 .

Это видно из следующих балансовых уравнений, полученных при анализе данных кинетического моделирования процесса в присутствии отдельно взятых добавок H_2 и CO:

добавка 25% H_2 по отношению к метану:

77.0 CH₄ + 71.8 O₂ + 25.0 H₂
$$\rightarrow$$
 51.4 H₂ +
+ 25.0 H₂ + 47.1 CO + 4.1 CO₂ +
+ 88.1 H₂O + 0.8 C₂H₄ + 11.2 C₂H₂ добавка 25% CO по отношению к метану:
79.1 CH₄ + 71.8 O₂ + 25.0 CO \rightarrow 64.7 H₂ +
+ 48.4 CO + 25.0 CO + 7.1 CO₂ +
+ 80.5 H₂O + 0.8 C₂H₄ + 10.2 C₂H₂.

Таким образом, добавление в исходную смесь синтез-газа и водорода приводит к небольшому увеличению количества ацетилена, то есть предшественника сажи.

Вводимые добавки, проходя постпламенную зону 2, почти не оказывают влияния на итоговое распределение компонентов, что видно из табл. 3, и следующих примерных балансов в расчете на прореагировавшие в зоне 2 компоненты:

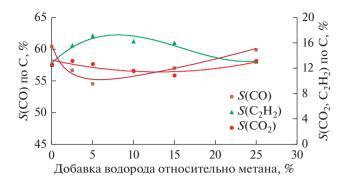

$$6.8 \text{ CH}_4 + 17.4 \text{ H}_2\text{O} + 0.5 \text{ C}_2\text{H}_4 + 1.1 \text{ C}_2\text{H}_2 \rightarrow$$
 \rightarrow 34.0 $\text{H}_2 + 3.3 \text{ CO} + 7.1 \text{ CO}_2$ (без добавки); $7.3 \text{ CH}_4 + 17.9 \text{ H}_2\text{O} + 0.5 \text{ C}_2\text{H}_4 + 0.9 \text{ C}_2\text{H}_2 \rightarrow$ \rightarrow 35.4 $\text{H}_2 + 3.8 \text{ CO} + 7.3 \text{ CO}_2$ (с добавкой синтез-газа в начало процесса).

Таблица 3. Материальные балансы компонентов реакции (в расчете на 100 молей метана в исходной смеси) для процесса в отсутствие добавок и в присутствии добавки синтез-газа в количестве 25% H₂ и 14.7% CO по отношению к метану для зоны горения 1 и постпламенной зоны 2

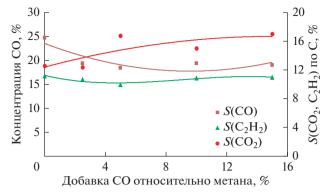
Выхол		В ол	В отсутствие синтез-газа	e3-ra3a			При	При добавке синтез-газа	23-Ta3a	
рылод продуктов, моль	вход	выход из зоны 1	разность для зоны 1	выход из зоны 2	разность между зонами 2 и 1	в зону 1	выход из зоны 1	разность для зоны 1	выход из зоны 2	разность между зонами 2 и 1
H_2	0.0	63.5	63.5	5.79	34.0	25.0	77.0	52.0	112.3	35.3
02	72.0	0.3	-1.7	0	-0.3	72.1	0.3	-71.7	0	-0.3
H_2O	0.0	82.4	82.4	64.9	-17.5	0.0	87.1	87.1	69.1	-18.0
00	0.0	51.1	51.1	54.9	3.8	14.7	60.2	45.5	63.7	3.5
CO_2	0.0	8.4	8.4	12.1	7.3	0.0	5.2	5.2	12.9	7.7
CH_4	100.0	20.6	-79.4	13.8	-6.8	100.0	23.3	-76.7	16.0	-7.3
C_2H_4	0.0	0.8	0.8	0.3	-0.5	0.0	1.0	1.0	0.5	-0.5
C_2H_2	0.0	10.1	10.1	9.0	- T:1	0.0	11.2	11.2	10.3	6.0—
lg(t) [c]		-2.3		-0.9			-2.4		-1.0	

Таблица 4. Материальные балансы компонентов реакции (в расчете на 100 молей метана в исходной смеси) для процесса в присутствии добавки водорода и добавок синтез-газа в начало постпламенной зоны 2

Выход	При до	бавке синтез (при з	При добавке синтез-газа в начало постпламенной зоны 2 (при значении $\lg{(t,c)}=-2.0$)	стпламенной = -2.0)	зоны 2	При	и добавке H_2 в (при зна	При добавке ${ m H}_2$ в начало постпламенной зоны 2 (при значении $\lg{(t,c)}=-2.0$)	ламенной зон = -2.0)	151 2
продуктов, моль	в зону 1	выход из зоны 1	ввод добавки синтез-газа в начало зоны 2	выход из зоны 2	разность для зоны 2	в зону 1	выход из зоны 1	ввод добавки Н2	выход из зоны 2	разность для зоны 2
H_2	0.0	6:99	39.5	127.2	20.8	0.0	70.5	39.5	129.9	19.9
O ₂	72.0	0.3	ı	0	-0.3	72.0	0.3	ı	0	-0.3
H_2O	0.0	11	ı	68.9	-12.2	0.0	79.3	I	8.89	-10.5
00	0.0	1.4	23.3	74.4	-0.3	0.0	51.2	I	55.6	4.4
CO ₂	0.0	5.7	I	11.9	6.1	0.0	8.9	I	8.6	3.0
$\mathrm{CH_4}$	100.0	19.9	1	15.8	-4.1	100.0	19.0	1	15.3	-3.7
$\mathrm{C_2H_4}$	0.0	0.5	1	0.4	-0.1	0.0	0.45	I	0.45	0
C_2H_2	0.0	10.5	I	9.7	-0.8	0.0	10.5	I	9.0	-1.5
lg(t) [c]		-2.01	-2.01	-0.98			-1.81	-1.81	-0.86	1

Рис. 2. Зависимости селективностей (S) образования по углероду CO, ацетилена и CO₂ от добавки H₂ в исходную смесь (по отношению к метану).

Учитывая, что введение синтез-газа и водорода в исходные реагенты приводит к дополнительному расходу кислорода на горение части вводимого водорода, нами был рассмотрен вариант влияния на распределение компонентов и образование ацетилена прямого ввода этих добавок в постпламенную зону, минуя зону горения. Полученные расчетные данные представлены в табл. 4.


Из табл. 4 видно, что введение добавок синтезгаза и водорода в начало постпламенной зоны 2 практически не влияет на кинетику образования продуктов реакции. Вводимые добавки следуют через зону 2 как бы "транзитом", мало влияя на распределение продуктов, особенно на образование и расходование ацетилена, несколько увеличивая время достижения постоянства величи-

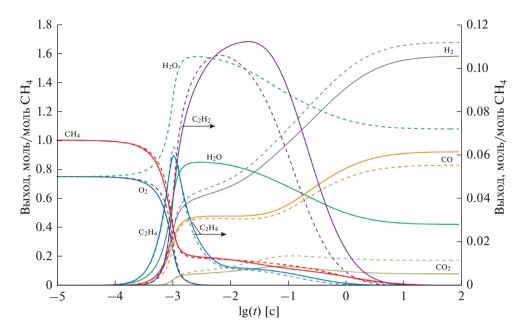
ны
$$\frac{[CO_2][H_2]}{[CO][H_2O]}$$
.

Экспериментальное исследование влияния добавок водорода и монооксида углерода на матричную конверсию метана в синтез-газ

Ранее экспериментально было показано, что добавление кислорода снижает выход ацетилена при окислительном крекинге легких алканов за счет увеличения доли УВ, вступающих в реакции окисления, а не термического пиролиза [20]. В данной работе было установлено (рис. 2), что добавки водорода до соотношения $\mathrm{CH_4/H_2} \sim 4$ приводят к увеличению селективности образования ацетилена, так как из-за конкуренции между молекулами метана и водорода за кислород происходит увеличение доли метана, расходуемого в процессе пиролиза.

До добавки $H_2 \sim 5\%$ происходит уменьшение селективности образования CO и CO₂ (рис. 2), что свидетельствует о снижении скорости окисления метана при добавках водорода в условиях матричной конверсии. Максимальная селектив-

Рис. 3. Зависимости концентрации С монооксида углерода в выходящем газе, селективностей (S) образования по углероду ацетилена и CO_2 от добавки CO в исходную смесь по отношению к метану.


ность образования ацетилена наблюдается для добавки $H_2 = 5\%$, для которой симбатно снижается селективность образования СО. Снижение селективности образования ацетилена при добавках $H_2 > 10\%$ обусловлено, вероятно, изменением температурного режима работы конвертора. При этом значении, несмотря на увеличение расхода исходной смеси из-за введения добавки водорода, наблюдали повышение температуры входной стороны матрицы.

При добавках СО до значения $\sim 6\%$ происходит уменьшение концентрации СО при одновременном росте селективности образования СО₂ (рис. 3), что свидетельствует о более высокой скорости реакции глубокого окисления СО до СО₂ по сравнению со скоростью окислительных стадий конверсии метана в условиях матричного риформинга.

При этом происходит незначительное уменьшение селективности образования ацетилена, достигающей минимума при добавлении 5% СО. Увеличение концентрации СО в исходной смеси приводило к постепенному затуханию процесса. Так в экспериментах с добавлением более 16% СО мы уже наблюдали полный срыв пламени с поверхности матрицы и прекращение матричной конверсии.

Влияние добавок H_2O

На рис. 4 представлены результаты кинетического моделирования распределения компонентов в ходе реакции $\mathrm{CH_4} + 0.75\,\mathrm{O_2} \to \mathrm{Продукты}$ при $1600\,\mathrm{K}$ в отсутствие и в присутствии добавки 1 моля $\mathrm{H_2O}$ на 1 моль $\mathrm{CH_4}$. Видно, что в этом случае влияние добавки более существенно, чем в случае добавок синтез-газа и водорода. Снижение концентрации ацетилена особенно заметно для времени реакции $0.1{-}0.5\,\mathrm{c}$, характерном для процесса матричной конверсии.

Рис. 4. Изменение состава продуктов при парциальном окислении метана с добавкой 1 моля H_2O на 1 моль CH_4 в исходной смеси (пунктирные кривые) и без добавки (сплошные кривые). Соотношение $O_2/CH_4 = 0.75$: 1, T = 1600 K.

Материальный баланс для зоны горения (в расчете на 100 молей прореагировавшего метана исходной смеси) может быть представлен следующими выражениями:

в отсутствие добавки Н₂О:

$$80.0 \text{ CH}_4 + 74.8 \text{ O}_2 \rightarrow 62.8 \text{ H}_2 + 47.8 \text{ CO} +$$

+ $8.5 \text{ CO}_2 + 84.8 \text{ H}_2\text{O} + 1.5 \text{ C}_2\text{H}_4 + 10.3 \text{ C}_2\text{H}_2;$
при добавке H_2O (1 моль H_2O на 1 моль CH_4):
 $80.8 \text{ CH}_4 + 74.8 \text{ O}_2 \rightarrow 67.1 \text{ H}_2 + 46.3 \text{ CO} +$
+ $10.8 \text{ CO}_2 + 81.8 \text{ H}_2\text{O} + 1.3 \text{ C}_2\text{H}_4 + 10.5 \text{ C}_2\text{H}_2$

Небольшое различие в распределении компонентов при добавке H_2O в пользу H_2 и CO_2 связано, видимо, с небольшим смещением равновесия реакции водяного сдвига; при этом добавка H_2O практически не оказывает влияния на выход C_2H_2 в зоне горения.

Для постпламенной зоны 2 материальные балансы компонентов реакции при проведении процесса в отсутствие добавок и в присутствии добавки водяного пара приведены в табл. 5.

Как следует из табл. 5, проведение процесса с добавкой воды (в данном случае 1 моль H_2O на моль CH_4 в исходной смеси) приводит к большему расходу воды на паровую конверсию метана и продуктов реакции, и соответственно, к увеличению выхода H_2 , снижению выхода CO и C_2H_2 . Соотношение $\frac{[H_2]}{[CO]}$ возрастает до 2.06 против 1.75 в отсутствие добавки.

Экспериментальное исследование матричной конверсии метан-кислородной смеси при соотношении $CH_4: O_2=1:0.75$ показало [5], что введение добавки H_2O до соотношения метан/пар ~ 1.5 приводит к увеличению выхода водорода, так что соотношение $\frac{[H_2]}{[CO]}$ выше, чем при конверсии без добавки воды (2.0 по сравнению с 1.7). При этом конверсия метана практически не изменилась, но заметно уменьшился выход ацетилена [5].

ЗАКЛЮЧЕНИЕ

Экспериментально и детальным кинетическим моделированием определено влияние добавок водорода, монооксида углерода, синтез-газа и водяного пара на состав продуктов матричной конверсии богатых метан-кислородных смесей. Установлено, что добавки водорода, монооксида углерода и синтез-газа, как при их введении в исходную смесь так и в постпламенную, зону оказывают незначительное влияние на характеристики процесса, в то время как добавки водяного пара снижают выход ацетилена и увеличивают соотношение Н₂/СО, существенно улучшая характеристики процесса. Результаты экспериментов с добавками водорода и монооксида углевода в исходную смесь хорошо согласуются с результатами кинетического моделирования: при матричной конверсии в присутствии этих добавок наблюдается увеличение селективности образования ацетилена за счет увеличения доли метана, расходуемого в результате пиролиза.

Таблица 5. Материальные балансы компонентов реакции (в расчете на 100 молей метана в исходной смеси) при проведении процесса в отсутствие добавок и в присутствии добавки водяного пара количестве 1 моля H_2O на 1 моль CH_4 в исходной смеси для постпламенной зоны 2

	F	3 отсутствие H ₂ C)	Ι	При добавке H ₂ C)
	вход в зону 2	выход	разность	вход в зону 2	выход	разность
H ₂	62.8	101.6	38.8	67.1	112.4	45.3
O_2	0.2	0.0	-0.2	0.2	_	-0.2
H_2O	84.8	66.4	-18.4	156.9	129.5	-27.4
C_2H_4	1.5	0.5	-1.0	1.3	0.4	-0.9
C_2H_2	10.1	8.3	-1.8	10.4	5.2	-5.2
CO	47.8	58.0	10.2	46.2	54.7	8.5
CO_2	8.5	12.8	4.3	10.7	20.4	9.7
CH_4	19.3	11.3	-8.0	18.6	13.5	-5.1
lg (t) [c]	-2.3	-0.8	_	-2.3	-0.8	_

ФИНАНСИРОВНИЕ РАБОТЫ

Математическое и кинетическое моделирование выполнены за счет гранта Российского научного фонда (проект № 19-73-00291) в ИПХФ РАН.

Экспериментальные исследования выполнены в рамках Программы фундаментальных научных исследований государственных академий наук. Темы 0089-2019-0018 (ИПХФ РАН) (Номер госрегистрации АААА-А19-119022690098-3) и № 47.16 "Химические аспекты энергетики; моделирование процессов окисления и горения" (ФИЦ ХФ РАН) (Номер госрегистрацииАААА-А20-120020590084-9) с использованием оборудования ЦКП "Новые нефтехимические продукты, полимерные композиты и адгезивы" (№ 77601).

КОНФЛИКТ ИНТЕРЕСОВ

Седов Игорь Владимирович является действующим заместителем главного редактора журнала "Нефтехимия".

ИНФОРМАЦИЯ ОБ АВТОРАХ

Савченко Валерий Иванович, д.х.н., проф, ORCID: https://orcid.org/0000-0001-9823-6844

Никитин Алексей Витальевич, к.х.н., ORCID: https://orcid.org/0000-0002-8236-3854

Озерский Алексей Валериевич, ORCID: https://or-cid.org/0000-0002-6765-1401

Зимин Ярослав Сергеевич, ORCID: https://orcid.org/0000-0002-3645-9361

Седов Игорь Владимирович, к.х.н., ORCID: https://orcid.org/0000-0001-9648-4895

Арутюнов Владимир Сергеевич, д.х.н., проф, ORCID: https://orcid.org/0000-0003-0339-0297

СПИСОК ЛИТЕРАТУРЫ

- Arutyunov V.S., Shmelev V.M., Sinev M.Yu., Shapovalova O.V. // Chemical Engineering J. 2011. V. 176–177. P. 291.
- Arutyunov V.S., Savchenko V.I., Sedov I.V., Fokin I.G., Nikitin A.V., Strekova L.N. // Chemical Engineering J. 2015. V. 282. P. 206.
- 3. Арутюнов В.С., Савченко В.И., Седов И.В., Шмелев В.М., Никитин А.В., Фокин И.Г., Эксанов С.А., Шаповалова О.В., Тимофеев К.А. // Журн. прикладной химии. 2016. Т. 89. № 11. С. 1450.
- 4. *Савченко В.И., Шаповалова О.В., Никитин А.В., Арутюнов В.С., Седов И.В.* // Журн. прикладной химии. 2018. Т. 91. № 9. С.1332.
- 5. Никитин А.В., Озерский А.В., Тимофеев К.А., Комаров И.К., Зимин Я.С., Седов И.В., Шмелев В.М., Арутюнов В.С. // Горение и взрыв. 2018. Т. 11. № 2. С. 18.
- 6. Nikitin A., Ozersky A, Savchenko V., Sedov I., Shmelev V., Arutyunov V. // Chemical Engineering J. 2019. V. 377. № 120833.
- 7. Gupta S.B., Biruduganti M., Bihari B., Sekar R. Natural Gas Fired Reciprocating Engines for Power Generation: Concerns and Recent Advances. 2012. Chapter 10. P. 211.
 - https://doi.org/10.5772/45992. Available at: http://cdn.intechopen.com/pdfs-wm/40563.pdf
- 8. *Иванов С.С., Тарасов М.Ю.* // Нефтяное хозяйство. 2011. № 1. С. 102.
- 9. *Houseman J.*, *Cerini D.J.* On-board hydrogen generator for a partial hydrogen injection internal combustion engine. 1974. Jet Propulsion Laboratory, California Institute of Technology. Contract No. NAS7-100, 74600.
- Mobasheri R., Seddiq M., Peng Z.J. // International J. of Hydrogen Energy. 2018. V. 43. I. 3. P. 1875.
- 11. Niu R., Yu X., Du Y., Xie H., Wu H., Sun Y. // Fuel. 2016. V. 186. P. 792.
- 12. Kim J., Chun K. M., Song S., Baek Hong-Kil, Lee S. W. // International J. of Hydrogen Energy. 2017. V. 42. №. 39. P. 25074.

- 13. *Билера И.В., Буравцев Н.Н., Россихин И.В.* // Журн. прикладной химии. 2020. Т. 93. № 3. С. 446.
- 14. Систер В.Г., Борисов А.А., Трошин К.Я., Билера И.В., Богданов В.А., Политенкова Г.Г., Колбановский Ю.А. // Химическая физика. 2006. Т. 25. № 1. С. 61.
- 15. Богданов В. А. Автореферат дис. на соискание звания к.х.н. "Процесс получения синтез-газа при горении сверхбогатых смесей метана и аппараты для его реализации". МГУИЭ. 2007. https://new-disser.ru/_avtoreferats/01003307904.pdf (дата обращения 19.11.2019).
- 16. *Trusov B.G.* In: Proc. XIV Int. Symp. on Chemical Thermodynamics. 2002. St-Petersburg, Russia. P. 483.

- 17. Healy D., Kalitan D.M., Aul C.J., Petersen E.L., Bourque G., Curran H. J. // Energy and Fuels. 2010. V. 24. № 3. P. 1521.
- 18. URL: http://www.kintechlab.com/products/chemical-workbench/ сайт программы "Chemical Work-Bench" (дата обращения: 07.10.2019).
- Savchenko V.I., Nikitin A.V., Sedov I.V., Ozerskii A.V., Arutyunov V.S. // Chem. 1 Engineering Science. 2019. V. 207. P. 744.
- Магомедов Р.Н., Никитин А.В., Савченко В.И., Арутюнов В.С. // Кинетика и катализ. 2014. Т. 54. № 6. С. 584.